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DIFFUSION OF GASEOUS EMISSIONS IN THE TURBULENT WAKE OF A PIPE 

L. V. Averin UDC 532.517.4 

The concentration of gas effluxing through a circular pipe into an external flow 
is determined as a function of the distance on the basis of theoretical and ex- 
perimental data for nitrogen, hydrogen, and helium for small ratios of the efflux 
and flow velocities, when the jet regime of diffusion degenerates into diffusion 
in the region of a turbulent wake of the source. 

The distribution of the concentration of a gaseous jet diffusion into a cross flow 
for values of the hydrodynamic parameter 1 ~ q ~ ~ is described in [i]. However, the 
values of 0 ~ q ~ i, when the gas or a mixture of gases effluxes into an external flow whose 
velocity is relatively low, are also of interest. In this case the discharged gas dif- 
fuses in the region of the turbulent wake of the source (Fig. l). The solution of the equa- 
tion of turbulent diffusion for a stationary point source with constant turbulent diffusion 
coefficient and constant velocity of the cross flow has the following form [2]: 

re(x, g, z)= 4~KxM exp[ u~(g2+z~)]4Kx (1) 

This formula gives the following expression for the on-axis concentration, which is maximum 
in the section x = const: 

M mn~ax(X, 0, 0 ) = -  (2) 
4~Kx 
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Fig. i. Diagram of the diffusion of a gase- 

ous discharge: the wavy line indicates the 
boundary of propagation of the discharge; 
the curve NMK depicts the concentration in 
the symmetry plane x-y for a fixed value of x. 
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Fig. 2. Distribution of the 
on-axis concentration in genera- 
lized coordinates: i) hydrogen, 
d o = 20.8 mm, u 0 = 9.1 m/sec, 
u a = 9.5 m/sec, q = 0.06; 2) 
helium, d o = i0 mm, u 0 = 18.7 
m/sec, u a = 8.4 m/sec, q = 0.7; 

3) nitrogen, d o = i0 mm, u 0 = 
8.4 m/sec, u a = 8.4 m/sec, q = 
1.0; 4) nitrogen, d o = 20 mm, 

u 0 = 1.9 m/sec, u a = 3.5 m/sec, 
q = 0.3; 5) nitrogen, d o = 20 
mm, u 0 = 4.5 m/sec, u a = 8.4 
m/sec, q = 0.3; the solid straight 
line was computed from the formu- 
la (6) and the dashed straight 
line was computed from the formula 
(ii) with q = i. 

The mass flow rate through the opening of the pipe is 

M = PoUo 4 
(3) 

In the region of the turbulent wake of the pipe it can be assumed, in accordance with 
Prandtl's mixing-length hypothesis [2], that the turbulent-diffusion coefficient is given 
by 

K=huado" (4) 

Substituting the expressions (4) and (3) into Eq. (2), We have 

C ~ n ~ m a x  __ UO 1 ] 

Po u~ 16k x* (5) 

i01 



The theoretically derived relation (5) is confirmed by the experimental data for hydrogen, 
nitrogen, and helium emissions with q r i, presented in Fig. 2 in dimensionless coordinates. 
The experimental procedure is described in [i]. As one can see from Fig. 2, the empirical 
dependence has the form 

1 u0 = 1 , 0 6 x * .  ( 6 )  
c u a 

Compar ing  t h e  f o r m u l a s  (5 )  and (6 )  we o b t a i n  t h e  v a l u e  

k = 0,066. (7) 

In. accordance with Eq. (4) the turbulent-diffusion coefficient is 

K = O,066u~do. (8 )  

The empirical coefficient k in Eq. (8) is approximately two times smaller than the coef- 
ficient, presented in [2], in the analagous equation for the turbulent-diffusion coefficient 
in the turbulent wake behind a cylinder. This can be explained by the fact that in the 
present work the turbulent-diffusion coefficient is determined for the end of the cylinder 
(pipe) in the transitional region of the turbulent wake. 

For q = I the semi-empirical formula (6) must match with the empirical relation, ob- 
tained in [i], for the distribution of the on-axis concentration in the jet discharge. For 
isothermal efflux, this relation has the form 

V P0 Xin " 

At a s u f f i c i e n l t y  l a r g e  d i s t a n c e  f r o m  t h e  p i p e  o p e n i n g  t h e  n e g a t i v e  t e r m s  on t h e  l e f t -  and 
r i g h t - h a n d  s i d e s  o f  t h e  e x p r e s s i o n  (9 )  can  be n e g l e c t e d :  

I ]//-~? 
C V Pa q-l /6x*'  

(io) 

Multiplying the left- and right-hand sides of (I0) by the ratio u0/u a gives 

1__ uo _ q i / 3 x , "  (ii) 
c ua 

For q = 1 formula (ii) is practically identical to the relation (6); this provides additional 
confirmation of the validity of the calculations performed. 

It is interesting to note that the expression (6), describing the limiting state of 
efflux as q + 0, is similar to the expression for the other limiting state q + ~, obtained 
for a turbulent jet in a stationary external space [I]: 

1 ] /  P$-o P " / ' - ~  ~ 0,225y*. (12)  
c 

In both cases the diffusion process does not depend on the hydrodynamic parameter q. This 
can be explained by the fact that as q + 0 the energy for the turbulent diffusion comes 
only from the external flow, while in the case q + ~ the energy is supplied by the effluxing 

jet. 

The results of this work can be used in fields of technology where it is necessary 
to calculate the diffusion of a single gas, blown through a pipe or a pipe connection into 
a flow of a different gas. 

NOTATION 

x and y, horizontal and vertical coordinates; q=poU~/O#~ , hydrodynamic parameter; 
P0 and Pa, gas density and the air density; u 0 and Ua, gas velocity and the air velocity; 
x* = x/d 0 , y* = y/d 0 , dimensionless coordinates; M, mass flow rate through the pipe, kg/sec; 
m, mass concentration, kg/mS; c, volume concentration along the x-axis (as q + 0) or the 
y-axis (for q § =); K, turbulent-diffusion coefficient, mZ/sec; k, coefficient of propor- 
tionality; and X'in, dimensionless initial section of the jet. 
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NONLINEAR PROBLEM OF HEAT CONDUCTION FOR A HEAT-SENSITIVE SPHERE 

Yu. M. Kolyano, E. G. Ivanik, 
and O. V. Sikora 

UDC 539.377:536.12 

The nonlinear problem of heat conduction is solved for a sphere which exchanges 
heat through its surface with the external medium according to Newton's law. 
The temperature field is investigated. 

Consider a heat-sensitive sphere which has an initial temperature tin and through 
whose spherical surface r = R heat is exchanged with the external medium, whose temperature 
jumps from 0 to t 0. The nonstationary temperature field determined by a prescribed heating 
action is determined by solving the following boundary-value problem: 

] a I r ~ ( t ) ~ r ] = e ~  ' 
r 2 Or 

tl-~=o= i n , ~ - .  =0, z(t)---v.[ t-- toS+(~)]  =0. 
or  r=O Or ~ ,=R 

(1 )  

( 2 )  

Introducing Kirchhoff' s substitution 

I i 
(3) 

t i n  

and making the assumption that Cv(t)/i(t) = a ~ const, we convert the nonlinear boundary-value 
problem (i)-(2) into the form 

1 a [r ~ a~ i ~ (4) 

a~ = o, ~ ~o-~f ~ i t -  ~oS+(~)] = o, (5 )  

where ~0 is the reference value of the thermal conductivity. 

The boundary condition at the boundary r = R contains the function t(R, ~), i.e., 
the solution of the desired nonlinear problem, taken on the boundary surface. It is obvious 
that t(R, ~) is a function of time only. For this reason, we approximate it with the help 
of splines of zero order, i.e., with the help of asymmetric unit step functions, as follows: 

t (R, ~) = %+ ~ t ,s_ ( ~ - ~ ) ,  ( 6 ) 
i ~ l  

where ti, where i = 1 .... , m, are, as yet, unknown values, and T i are the partition points 
on the straight line (0, ~). 

We note that the representation (6) is adequate for determining the step functions 
introduced in [i]. Since any continuous and monotonic function is the uniform limit of 
step functions, the expression (6) is legitimate and correct. 
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